

### **Table of Contents**

| Introduction                                                                                                                                                                                                                                                                                                    | 4                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| About this Manual                                                                                                                                                                                                                                                                                               | 4                                       |
| The TFZ                                                                                                                                                                                                                                                                                                         | 4                                       |
| Model and Serial Numbers                                                                                                                                                                                                                                                                                        | 4                                       |
| Specifications                                                                                                                                                                                                                                                                                                  | 5                                       |
| Dimensions                                                                                                                                                                                                                                                                                                      | 7                                       |
| Necessary Equipment Table                                                                                                                                                                                                                                                                                       | 8                                       |
| FOUNDATION Fieldbus®Interface                                                                                                                                                                                                                                                                                   | 10                                      |
|                                                                                                                                                                                                                                                                                                                 |                                         |
| Function Blocks                                                                                                                                                                                                                                                                                                 | 11                                      |
| Function Blocks Description of FOUNDATION Fieldbus Blocks                                                                                                                                                                                                                                                       | <b> 11</b><br>12                        |
| Function Blocks<br>Description of FOUNDATION Fieldbus Blocks<br>Resource Block (Index Number 1000)                                                                                                                                                                                                              | <b> 11</b><br>12<br>12                  |
| Function Blocks<br>Description of FOUNDATION Fieldbus Blocks<br>Resource Block (Index Number 1000)<br>Temperature Transducer Block (Index Number 1200)                                                                                                                                                          | <b>11</b><br>                           |
| Function Blocks.         Description of FOUNDATION Fieldbus Blocks.         Resource Block (Index Number 1000)         Temperature Transducer Block (Index Number 1200)         Analog Input Block (Index Number 1100)                                                                                          | <b>11</b><br>12<br>12<br>12<br>16<br>25 |
| Function Blocks.         Description of FOUNDATION Fieldbus Blocks.         Resource Block (Index Number 1000)         Temperature Transducer Block (Index Number 1200)         Analog Input Block (Index Number 1100)         Input Settings.                                                                  | 11<br>                                  |
| Function Blocks.         Description of FOUNDATION Fieldbus Blocks.         Resource Block (Index Number 1000)         Temperature Transducer Block (Index Number 1200)         Analog Input Block (Index Number 1100)         Input Settings.         TFZ Configuration                                        |                                         |
| Function Blocks.         Description of FOUNDATION Fieldbus Blocks.         Resource Block (Index Number 1000)         Temperature Transducer Block (Index Number 1200)         Analog Input Block (Index Number 1100)         Input Settings.         TFZ Configuration         Transducer Block Configuration | 11121212121212                          |

| Installation                        |  |
|-------------------------------------|--|
| Mounting the TFZ                    |  |
| Making the Electrical Connections   |  |
| Recommended Ground Wiring Practices |  |
| CE Conformity                       |  |
| Operation                           |  |
| Maintenance                         |  |
| Customer Support                    |  |
| Installation in Hazardous Locations |  |

### Introduction

This is the user's manual for Moore Industries' TFZ Programmable FOUNDATION Fieldbus™ Temperature Transmitter. It contains all of the information needed to configure, install, operate and maintain the TFZ.

#### About this Manual

Pay particular attention wherever you see a "<u>Note</u>", "<u>Caution</u>" or "<u>WARNING</u>".

<u>Note</u> - Information that is helpful for a procedure, condition or operation of the unit.

<u>Caution</u>– Hazardous procedure or condition that could damage or destroy the unit.

<u>WARNING</u>- Hazardous procedure or condition that could injure the operator.

#### The TFZ

The TFZ is a 2-wire (loop-powered), user-configurable, FOUNDATION Fieldbus<sup>™</sup>-based temperature transmitter. It is an H1 Basic Device conforming to the H1-Standard (IEC 61158-2, 31.25kbits/s) and is implemented as a \*Group 3, Class 31 device. It allows you to network multiple transmitters onto one link that utilizes the FOUNDATION Fieldbus protocol.

The TFZ is comprised of an Analog Input Function Block (AI) which is supported by one Resource Block (RB) and one temperature Transducer Block (TB).

The TFZ configures to accept a direct input from sensors and a wide array of transmitters and instruments. It then converts the input to a two-way, all digital communication protocol that is ready for direct interface with an AMS, DCS and other computerbased SCADA systems.

#### **Model and Serial Numbers**

Moore Industries uses the model and serial numbers of our instruments to track information regarding each unit that we sell and service. If a problem occurs with your instrument, check for a tag affixed to the unit listing these numbers. Supply the Customer Support representative with this information when calling.

### **Specifications**

| Performance | Input Accuracy: Refer to        | Performance | Supply Range: 9-32V,            | Display     | Decimal Points:            |
|-------------|---------------------------------|-------------|---------------------------------|-------------|----------------------------|
|             | Table 4                         | (Continued) | Foundation Fieldbus             | (Continued) | Automatically adjusted     |
|             | Overall Accuracy: The overall   |             | Approved                        |             | decimal point with a user  |
|             | accuracy of the unit is the     |             | Load Effect: N/A                |             | selectable maximum up to   |
|             | input accuracy. It includes the |             | T/C Input Impedance:            |             | four places                |
|             | combined effects of linearity,  |             | 40Mohms, nominal                |             | Range: -99999 to 99999     |
|             | hysteresis, repeatability and   |             | Excitation Current: RTD         |             | Minimum Display Span:      |
|             | adjustment resolution. It       |             | and Ohms,                       |             | 1.00                       |
|             | does not include ambient        |             | 250 microamps, ±10%             |             |                            |
|             | temperature effect. For T/C     |             | RTD Lead Wire                   | Ambient     | Operating and Storage      |
|             | input, add the RJC error.       |             | Resistance Maximum:             | Temperature | Range: -40°C to +85°C      |
|             | Reference Junction              |             | RTD resistance + 2X lead        |             | (-40°F to +185°F)          |
|             | Compensation: ±0.45°C           |             | wire resistance                 |             | Relative Humidity:         |
|             | (±0.81°F)                       |             | <4000 ohms;                     |             | 0-95%, non-condensing      |
|             | Stability: Refer to Table 1     |             | Recommended lead wire           |             | Ambient Temperature        |
|             | Isolation: 500Vrms between      |             | resistance for three wire       |             | Effect: Refer to Table 2   |
|             | input, output and case          |             | connections: <35 ohms/          |             | Effect on Reference        |
|             | continuous, and will withstand  |             | wire; 10 ohm copper sensor      |             | Junction Compensation:     |
|             | a 500Vac dielectric strength    |             | <5 onms                         |             | ±0.005°C of input span/°C  |
|             | test for one minute (with no    |             | Sensor Lead Resistance          |             | change of amplent          |
|             | breakdown)                      |             | Effect: 1.0 onm in reading/     |             | temperature                |
|             | Step Response Time:             |             | onm of lead resistance for      |             |                            |
|             | 500msec, maximum, 256msec       |             | 2-wire sensors; 1.0 onm         |             | 20V/m@80-1000IVIHZ,        |
|             | typical from the time an        |             | In reading/onm of lead of       |             | IKHZ AW when tested        |
|             | the corresponding floating      |             |                                 |             | according to IEC 1000-4-   |
|             | neint processed variable in     |             | 4 wire concore                  |             | or loop                    |
|             | available to be read by other   |             | A-wire sensors                  |             | Startun Time: Derformance  |
|             |                                 |             | Resolution. Input, 20-bit       |             | falls within specification |
|             | devices                         | Display     | Type: Top Bow 10mm              |             | 8 seconds after power is   |
|             | Over-voltage Protection:        | Display     | (0.4 in) high black digits on   |             | applied                    |
|             | Input +5Vdc peak                |             | a reflective background:        |             | Noise Rejection:           |
|             | maximum                         |             | Bottom Bow, 6mm (0.225          |             | Common mode                |
|             | Digital Input Filter            |             | in) high digits on a reflective |             | 100dB@50/60Hz: Normal      |
|             | 50/60 Hz (user-selectable)      |             | background: Two-digit           |             | Mode: Befer to Table 3     |
|             | Power Supply Requirement:       |             | FOUNDATION Fieldbus             |             |                            |
|             | 9-32Vdc, 12.07mA maximum        |             | address indicator               | Weight      | 210a(74az)                 |
|             | under normal operation:         |             | Format: Two rows of five        | , noight    | 2109 (7.7 02)              |
|             | 18mA maximum under fault        |             | alphanumeric characters         |             |                            |
|             | conditions                      |             |                                 |             |                            |

Specifications and information subject to change without notice.

#### Table 1. Long-Term Stability

| Stability (% of maximum    | Input to FOUNDATION<br>Fieldbus H1 |       |       |  |  |  |
|----------------------------|------------------------------------|-------|-------|--|--|--|
| span)                      | 1 yr                               | 3 yrs | 5 yrs |  |  |  |
| T/C, mV                    | 0.008                              | 0.014 | 0.019 |  |  |  |
| RTD, Ohm,<br>Potentiometer | 0.047                              | 0.081 | 0.104 |  |  |  |

#### Table 2.Ambient Temperature Effects

| Sensor<br>Type | Digital Accuracy per 1°C (1.8°F)<br>change in Ambient |
|----------------|-------------------------------------------------------|
| RTD            | 0.003°C                                               |
| T/C            | 0.003°C + 0.005% of reading                           |
| Millivolt      | 0.005mV + 0.005% of reading                           |
| Ohm            | 0.002 ohms + 0.005% of reading                        |

#### Table 3. Normal Mode Rejection Ratio

| Sensor Ty         | pe         | Max. p-p Voltage Injection for<br>70dB at 50/60Hz |
|-------------------|------------|---------------------------------------------------|
| T/C: J, K, N,     | C, E       | 150mV                                             |
| T/C: T, R, S      | S, B       | 80mV                                              |
| Pt RTD: 100, 200, | 300 ohms   | 250mV                                             |
| Pt RTD: 400, 500, | 1000 ohms  | 1V                                                |
| Ni: 120 oh        | ms         | 500mV                                             |
| Cu: 9.03 ol       | าฑร        | 100mV                                             |
| Resistance        | mV         |                                                   |
| 1-4kohms          | 250-1000   | 1V                                                |
| 0.25-1kohms       | 62.5-250   | 250mV                                             |
| 0.125-0.25kohms   | 31.25-62.5 | 100mV                                             |

Table 4.Input and Accuracy Table

| Input      | Туре              | α Ohn    | ıs                                | Conformance<br>Range             | Minimum<br>Span | Input<br>Accuracy    | Maximum<br>Range                   | Sensor-to-<br>Transmitter                                                               |
|------------|-------------------|----------|-----------------------------------|----------------------------------|-----------------|----------------------|------------------------------------|-----------------------------------------------------------------------------------------|
|            |                   |          | 100                               |                                  |                 |                      |                                    | Up to ±0.014°C                                                                          |
|            |                   |          | 200                               | ]                                |                 |                      |                                    | (±0.025°F) system accuracy*.                                                            |
|            |                   |          | 300                               | -200 to 850°C                    |                 |                      | -240 to 960°C                      | *High-accuracy                                                                          |
|            |                   | 0.003850 | 400                               | -328 to 1562°F                   |                 |                      | -400 to 1760°F                     | achieved by using a 4-wire<br>1000 ohm platinum RTD                                     |
|            |                   |          | 500                               | ]                                |                 |                      |                                    | with a span of 100°F (50°F<br>minimum) calibrated in our<br>sensor-matching calibration |
|            |                   |          | 1000                              |                                  | 10°C            |                      |                                    | bath.                                                                                   |
|            | Platinum          |          | 100                               |                                  | (18°F)          | ±0.1°C<br>(+0.18°F)  |                                    |                                                                                         |
| RTD        |                   |          | 200                               |                                  |                 |                      |                                    |                                                                                         |
|            |                   | 0.003902 | 400                               | -100 to 650°C                    |                 |                      | -150 to 720°C<br>-238 to 1328°F    |                                                                                         |
|            |                   |          | 500                               |                                  |                 |                      |                                    |                                                                                         |
|            |                   |          | 1000                              |                                  |                 |                      |                                    |                                                                                         |
|            |                   | 0.003916 | 100                               | -200 to 510°C                    |                 |                      | -240 to 580°C                      |                                                                                         |
|            | Nickel            | 0.00672  | 120                               | -80 to 320°C                     |                 |                      | -100 to 360°C                      |                                                                                         |
|            | Copper            | 0.00427  | 9.035                             | -50 to 250°C<br>-58 to 482°F     | 100°C           | ±0.85°C<br>(±1.53°F) | -65 to 280°C<br>-85 to 536°F       |                                                                                         |
| Ohma       | Direct Resistance |          | 0-4000 ohms                       | 0-4000 ohms                      | 10 ohms         | ±0.4 ohms            | 0-4095 ohms                        |                                                                                         |
| Onms       | Potentiometer     | n/a      | 125, 250, 500, 1k,<br>2k, 4k ohms | 0-100%                           | 10%             | ±0.1%                | 0-100%                             |                                                                                         |
|            | J                 | n/a      | n/a                               | -180 to 760°C<br>-292 to 1400°F  | 35°C<br>63°F    | ±0.25°C<br>(±0.45°F) | -210 to 770°C<br>-346 to 1418°F    |                                                                                         |
|            | к                 | n/a      | n/a                               | -150 to 1370°C<br>-238 to 2498°F | 40°C<br>72°F    | ±0.3°C<br>(±0.54°F)  | -270 to 1390°C<br>-454 to 2534°F   |                                                                                         |
|            | E                 | n/a      | n/a                               | -170 to 1000°C<br>-274 to 1832°F | 35°C<br>63°F    | ±0.2°C<br>(±0.36°F)  | -270 to 1013°C<br>-454 to 1855.4°F |                                                                                         |
|            | т                 | n/a      | n/a                               | -170 to 400°C<br>-274 to 752°F   | 35°C<br>63°F    | ±0.25°C<br>(±0.45°F) | -270 to 407°C<br>-454 to 764.6°F   |                                                                                         |
| T/C        | R                 | n/a      | n/a                               | 0 to 1760°C<br>32 to 3200°F      | 50°C<br>90°F    | ±0.55°C<br>(±0.99°F) | -50 to 1786°C<br>-58 to 3246.8°F   |                                                                                         |
|            | S                 | n/a      | n/a                               | 0 to 1760°C<br>32 to 3200°F      | 50°C<br>90°F    | ±0.55°C<br>(±0.99°F) | -50 to 1786°C<br>-58 to 3246.8°F   |                                                                                         |
|            | В                 | n/a      | n/a                               | 400 to 1820°C<br>752 to 3308°F   | 75°C<br>135°F   | ±0.75°C<br>(±1.35°F) | 200 to 1836°C<br>392 to 3336.8°F   |                                                                                         |
|            | N                 | n/a      | n/a                               | -130 to 1300°C<br>-202 to 2372°F | 45°C<br>81°F    | ±0.4°C<br>(±0.72°F)  | -270 to 1316°C<br>-454 to 2400.8°F |                                                                                         |
|            | С                 | n/a      | n/a                               | 0 to 2300°C<br>32 to 4172°F      | 100°C<br>180°F  | ±0.8°C<br>(±1.44°F)  | 0 to 2338°C<br>32 to 4240.4°F      |                                                                                         |
| Millivolts | DC                | n/a      | n/a                               | -50 to 1000mV                    | 4mV             | 15 microvolts        | -50 to 1000mV                      |                                                                                         |

Figure 1. TFZ Hockey-Puck Housing (HP) Dimensions with Flanges



Figure 2. BH Housing Dimensions



#### Figure 3. D-Box Housing Dimensions



Table 5. Necessary Equipment Table

| Device                                                                                               | Specifications                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variable Input Simulator for Thermocouple, RTD,<br>Millivolt, Potentiometer or Decade Resistance Box | Variable; Accurate to ±0.05% of unit span                                                                                                                                                       |
| Power Supply                                                                                         | 9-32Vdc, Foundation fieldbus*registered                                                                                                                                                         |
| Personal Computer<br>(Optional)                                                                      | Microsoft Windows based PC;<br>16Mb free RAM; 20MB free disk space on hard drive<br>Microsoft Windows XP, Vista or 7<br>1 (one) serial port or one available USB port (with optional USB cable) |
| Fieldbus Configuration Tool                                                                          | Capable of configuring the required FOUNDATION Fieldbus® parameters                                                                                                                             |

Figure 4. Incorporating the TFZ Into Your System



### **FOUNDATION Fieldbus**

### Interface

The TFZ's fieldbus interface is comprised of an Analog Input Function Block (AI) which is supported by one Resource Block (RB) and one temperature Transducer Block (TB).

The following describes additional interface parameters.

#### **Device Description**

The Device Description (DD) files are required in order to use a Fieldbus Configuration Tool. The DD files can be found on the *Moore Industries Interface Solution PC Configuration Software* CD, which accompanied your TFZ.

You may also visit our website at www.miinet.com to obtain the installation files.

#### **Common File Format**

The Common File Format (CFF) capability is required for offline configuration of the TFZ.

#### Manufacturer's ID

The Manufacturer's ID is a constant value and is stored in the Resource Block MANUFAC\_ID parameter.

The Manufacturer's ID for Moore Industries devices will always be 0x0007B0.

#### **Device Type**

The device type is a constant value that is assigned by the manufacturer. It is held in the Resource Block's DEV\_TYPE parameter. For the TFZ, this value will always be 0x0001.

#### **Device ID**

Device ID is a constant value that is assigned by Moore Industries at the time of manufacture. It manifests itself as the DEV\_ID object which is the device identifier. It is a permanent, unique identifier for the device and is made up of the Manufacturer's ID, Device type and serial number as shown in the following example. mmmmmttttssssssssssssss

where

mmmmmm = Manufacturer ID tttt = Device type sssssssssssss = Serial number packed with leading zeros

The full length of the serial number identifier is not needed. Therefore, the final six characters are replaced with spaces. This leads to the following:

If the serial number is 8492, the Device ID will be:

0007B0000100000000008492

#### **Physical Device Tag**

Initially, the Physical Device Tag is assigned by Moore Industries at the time of manufacture. It manifests itself as the PD\_TAG object, which is an alphanumeric, unique identifier for the device. The parameter is initially *TFZ\_Transmitter\_* with the value following the underscore being ten serial number characters and then six spaces. Once installed, you can alter the Physical Device Tag to reflect a desired descriptor.

#### **Block Tags**

Block tags for the individual blocks are initially assigned by Moore Industries at the time of manufacture. They are comprised of a sixteen character string, followed by the last ten numerical characters of the serial number, and then six space characters. The sixteen character string identifies each block uniquely within the device. Once the TFZ is installed, each of the block tags may be altered (in isolation) for compatibility with plant practice.

#### LC-Display

The LC-Display contains two rows of five alphanumeric characters. The larger display is typically used to display the process variable; the smaller display will indicate the units. The twocharacter display shows the fieldbus node address.

### **Function Blocks**

The following describes general information regarding TFZ functions blocks.

#### **Device Description**

Before attempting to configure the TFZ, ensure that the host is operating with the most recent version of the Device Description file. To verify that you are using the most recent version, you may visit our website at www.miinet.com and install the files.

#### **Node Address**

When shipped, the TFZ is temporarily set to address 248. This enables FOUNDATION fieldbus host systems to automatically detect the device and move it to a permanent address.

#### Modes

The Resource, Transducer and Analog Input Function Blocks have modes of operation that dictate the operation of the block. Each block supports both automatic (AUTO) and out of service (OOS) modes. There may also be other modes that are supported.

When an upstream block is set to OOS, the output status of all downstream blocks is affected. Therefore, the Resource Block mode will affect the AI Function Block mode. However, the Transducer Block is not in the mode stream so will neither affect, nor be affected by, the modes of the other blocks.

#### **Changing Modes**

To change the operating mode, set the MODE\_BLK. TARGET parameter to the desired setting. If the block is functioning properly, after a short delay the MODE\_ BLOCK.ACTUAL parameter should reflect the change.

#### **Permitted Modes**

In order to prevent unauthorized changes to a block's operating mode, configure MODE\_BLOCK to PERMITTED. This allows only the desired operating modes to be in use. It is recommended to always select OOS as one of the permitted modes.

#### Automatic

This is typically set as the normal operating mode. In AUTO mode, any functions performed by the block will execute. If the block has any outputs, they will continue to update.

#### Out of Service (OOS)

If a block is set to OOS, then some of its functions will not execute. If the block has any outputs, they typically will not update and the status of any values passed to downstream blocks will be returned to the previous setting in order for the block to operate normally.

Some changes to the configuration of the block will require the block mode to be switched to OOS. However, when the changes have been made, the mode should be returned to the previous setting.

#### Manual

In this mode (labeled MAN), variables that are passed out of the block can be manually set for test or override purposes. In the TFZ, this mode is only availabe with the AIFB.

#### Link Active Scheduler (LAS)

Currently, the TFZ has no LAS capabilities.

#### **Block Instantiation**

Block instantiation is not supported by the TFZ.

#### Virtual Communication Relationships (VCRs)

There are a total of 24 VCRs in the TFZ. Of those, four are permanent and 20 are fully configurable by the host system. The TFZ also makes available 22 Link Objects.

#### **Block Execution**

The maximum block execution time for an analog input is 30ms.

#### **Host Timer Recommendations**

| Table ( | <b>3</b> . | Host  | Timer  | Recommendatio    | ns  |
|---------|------------|-------|--------|------------------|-----|
| Tuble ( |            | 11001 | 111101 | Reconninentautio | 110 |

| Host Timer Recommendations | Value   |
|----------------------------|---------|
| T1                         | 96000   |
| T2                         | 1920000 |
| ТЗ                         | 480000  |

#### Simulate Enable Switch

The Simulate Enable switch, labeled SIM, is found on the TFZ's front panel. It is used to enable simulation of measurements and as a lock-out feature for the AIFB. To enable the this feature, slide the SIM switch into the ON position.

#### Write Protect Switch

The Write Protect switch, labeled WP, is found on the TFZ's front panel. It is used in conjuction with the Resource Block to prohibit writing of any configuration changes to the TFZ. If hard write locking is enabled coupled with the Write Protect switch being set to ON, then writing to any block parameters cannot occur.

### Description of Foundation Fieldbus Blocks

This section describes the TFZ's available Function Blocks.

#### **Resource Block (Index Number 1000)**

The Resource Function Block (RB) contains diagnostics, hardware and electronics information along with display configuration. There are no linkable inputs or outputs to the Resource Block.

| Parameter<br>Mnemonic | Rel.<br>Index | Obj<br>Type | Data Type<br>Structure | Store | Size | Valid<br>Range                                                                                   | Initial<br>Value                                        | Unit   | Mode | Other     | Range<br>Check |
|-----------------------|---------------|-------------|------------------------|-------|------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------|------|-----------|----------------|
| STANDARD<br>PARAMETER | 06            |             |                        |       |      |                                                                                                  |                                                         |        |      |           |                |
| RS_STATE              | 7             | s           | Unsigned8              | D     | 1    | [6]:4.4.3.24                                                                                     | 0:undefined                                             | E      |      | Read only |                |
| TEST_RW               | 8             | D           | Visible String         |       | 112  |                                                                                                  | null                                                    | na     |      |           |                |
| DD_RESOURCE           | 9             | s           | Visible String         | s     | 32   |                                                                                                  | null                                                    | na     |      | Read only |                |
| MANUFAC_ID            | 10            | s           | Unsigned32             | S     | 4    | 0x0007B0                                                                                         | 0x0007B0                                                | none   |      | Read only |                |
| DEV_TYPE              | 11            | S           | Unsigned16             | S     | 2    | 0x0001                                                                                           | 0x0001                                                  | E      |      | Read only |                |
| DEV_REV               | 12            | S           | Unsigned8              | s     | 1    | 0x01                                                                                             | 0x01                                                    | none   |      | Read only |                |
| DD_REV                | 13            | s           | Unsigned8              | S     | 1    | 0x01                                                                                             | 0x01                                                    | none   |      | Read only | Yes            |
| GRANT_DENY            | 14            | R           | DS-70                  | S     | 2    |                                                                                                  | 0;0                                                     | na     |      |           |                |
| HARD_TYPES            | 15            | s           | Bit String             | S     | 2    |                                                                                                  | 0x8000                                                  | na     |      | Read only |                |
| RESTART               | 16            | D           | Unsigned8              | D     | 1    | 0: undefined<br>1: Run<br>2: Restart Resource<br>block<br>3: Factory defaults<br>4: Reset device | 1: Run                                                  | E      |      |           | Yes            |
| FEATURES              | 17            | S           | Bit String             | S     | 2    |                                                                                                  | 0x5800; Reports;<br>Soft write lock;<br>Hard write lock | na     |      | Read only |                |
| FEATURE_SEL           | 18            | S           | Bit String             | S     | 2    |                                                                                                  | 0x4800; Reports;<br>Hard write lock                     | na     |      |           |                |
| CYCLE_TYPE            | 19            | s           | Bit String             | S     | 2    |                                                                                                  | 0xC000                                                  | na     |      | Read only |                |
| CYCLE_SEL             | 20            | S           | Bit String             | S     | 2    |                                                                                                  | 0x0000                                                  | na     |      |           |                |
| MIN_CYCLE_T           | 21            | s           | Unsigned32             | S     | 4    |                                                                                                  | 3200                                                    | 1/32ms |      | Read only |                |
| MEMORY_SIZE           | 22            | s           | Unsigned16             | S     | 2    |                                                                                                  | 0                                                       | kbytes |      | Read only |                |
| NV_CYCLE_T            | 23            | s           | Unsigned32             | S     | 4    |                                                                                                  | 0                                                       | 1/32ms |      | Read only |                |
| FREE_SPACE            | 24            | s           | Float                  | D     | 4    | 0-100%                                                                                           | 0                                                       | %      |      | Read only |                |
| FREE_TIME             | 25            | S           | Float                  | D     | 4    | 0-100%                                                                                           | 0                                                       | %      |      | Read only |                |
| SHED_RCAS             | 26            | S           | Unsigned32             | s     | 4    |                                                                                                  | 64000                                                   | 1/32ms |      |           | Yes            |
| SHED_ROUT             | 27            | s           | Unsigned32             | s     | 4    |                                                                                                  | 64000                                                   | 1/32ms |      |           | Yes            |
| FAULT_STATE           | 28            | S           | Unsigned8              | N     | 1    | 1: Clear; 2: Active                                                                              | 1                                                       | E      |      | Read only |                |
| SET_FSTATE            | 29            | s           | Unsigned8              | D     | 1    | 1: Off; 2: Set                                                                                   | 1: Off                                                  | E      |      |           | Yes            |
| CLR_FSTATE            | 30            | S           | Unsigned8              | D     | 1    | 1: Off; 2: Clear                                                                                 | 1: Off                                                  | E      |      |           | Yes            |
| MAX_NOTIFY            | 31            | S           | Unsigned8              | s     | 1    | 20                                                                                               | 20                                                      | none   |      | Read only |                |
| LIM_NOTIFY            | 32            | S           | Unsigned8              | S     | 1    | 0[MAX_NOTIFY]                                                                                    | 20                                                      | none   |      |           | Yes            |
| CONFIRM_TIME          | 33            | S           | Unsigned32             | s     | 4    |                                                                                                  | 64000                                                   | 1/32ms |      |           | Yes            |
| WRITE_LOCK            | 34            | S           | Unsigned8              | S     | 1    | 1: Unlocked;<br>2: Locked                                                                        | 1: Unlocked                                             | E      |      |           | Yes            |
| UPDATE_EVT            | 35            | R           | DS-73                  | D     | 14   |                                                                                                  | 0;0;0,0;0; 0x0900                                       | na     |      | Read only |                |
| BLOCK_ALM             | 36            | R           | DS-72                  | D     | 13   |                                                                                                  | 0;0;0,0;0;0                                             | na     |      |           | Yes            |
| ALARM_SUM             | 37            | R           | DS-74                  | mix   | 8    |                                                                                                  | 0;0;0;0                                                 | na     |      |           |                |
| ACK_OPTION            | 38            | S           | Bit String             | S     | 2    | 0: Auto Ack<br>Disabled;<br>1: Auto Ack Enabled                                                  | 0:Auto Ack<br>Disabled                                  | na     |      |           |                |
| WRITE_PRI             | 39            | S           | Unsigned8              | S     | 1    | 015                                                                                              | 0                                                       |        |      |           |                |
| WRITE_ALM             | 40            | R           | DS-72                  | D     | 13   |                                                                                                  | 0                                                       | none   |      |           | Yes            |
| ITK_VER               | 41            | S           | Unsigned16             | S     | 2    |                                                                                                  | 4                                                       | none   |      | Read only |                |

#### Table 7. Resource Block Parameters

Continued on next page

#### Table 7. Continued

| Manufacturer Specific |               |             |                        |       |      |                                                               |                           |      |      |           |                |
|-----------------------|---------------|-------------|------------------------|-------|------|---------------------------------------------------------------|---------------------------|------|------|-----------|----------------|
| Parameter<br>Mnemonic | Rel.<br>Index | Obj<br>Type | Data Type<br>Structure | Store | Size | Valid<br>Range                                                | Initial<br>Value          | Unit | Mode | Other     | Range<br>Check |
| TOT_HRS_USED          | 42            | s           | Unsigned32             | D     | 4    |                                                               | 0                         |      |      | Read only |                |
| TOT_HRS_CONFIG        | 43            | s           | Unsigned32             | N     | 4    |                                                               | 0                         |      |      | Read only |                |
| LCD_SELECTOR          | 44            | S           | Unsigned8              | N     | 1    | 0: PV(TTB)<br>1: OUT(AIFB1)<br>2: PV+LCD_EGU<br>3: UT+LCD_EGU | 0: PV(TTB)                | E    |      |           | Yes            |
| LCD_EGU               | 45            | s           | Visible String         | N     | 5    |                                                               | u"                        | na   |      |           |                |
| LCD_PRECISION         | 46            | S           | Unsigned8              | S     | 1    | 0: 0 digits;<br>1: 1 digit;<br>2: 2 digits;<br>3: 3 digits    | 3: 3 Digits               | E    |      |           | Yes            |
| SERVICE_CODE          | 47            | s           | Unsigned32             | D     | 4    |                                                               | 0                         |      | O/S  |           | Yes            |
| SW_REVISION           | 48            | S           | Visible String         | N     | 6    |                                                               | "j-n-bb" e.g.<br>"1-0-20" |      |      | Read only |                |
| HW_REVISION           | 49            | S           | Visible String         | N     | 4    |                                                               | "j-nn" e.g.<br>"0-00"     |      | O/S  | Read only |                |
| MODEL_NUMBER          | 50            | s           | Visible string         | N     | 24   |                                                               | 24 x ' '                  |      |      |           |                |
| DEVICE_ID             | 51            | S           | Visible string         | N     | 22   |                                                               | 22 x ' '                  |      | O/S  | Read only |                |
| LCD_ADDR_MODE         | 52            | S           | Unsigned8              | N     | 1    | 0: hexadecimal;<br>1: decimal                                 | 0: hexadecimal            | E    |      |           | Yes            |
| INSTALL_DATE          | 53            | s           | Visible string         | N     | 16   |                                                               | 16 x ' '                  |      |      | Read only |                |

#### Table Abbreviations

| The following abbreviations apply to data in Tables 7, 9 and 16. |                              |  |  |
|------------------------------------------------------------------|------------------------------|--|--|
| Store:                                                           |                              |  |  |
| D                                                                | Storage class "dynamic"      |  |  |
| Ν                                                                | Storage class "non volatile" |  |  |
| S                                                                | Storage class "static"       |  |  |
| ObjType                                                          | e:                           |  |  |
| R                                                                | Object type "record"         |  |  |
| S                                                                | Object type "simple"         |  |  |
| Unit:                                                            |                              |  |  |
| E                                                                | Enumerated parameter         |  |  |
| PVR                                                              | Primary Value Range          |  |  |
| SR                                                               | Sensor Range                 |  |  |
| SVU                                                              | Secondary Value Unit         |  |  |
| CU                                                               | Cal Unit                     |  |  |
| Mode:                                                            |                              |  |  |
| O/S                                                              | Out of Service               |  |  |

## **Description of Resource Block Parameters** The following table identifies the Resource Block's

parameters.

| Parameter      | Description                                                                                                                                                                                                                                                                                                                                              |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOT_HRS_USED   | Total count of hours since the transmitter was last powered-up.                                                                                                                                                                                                                                                                                          |
| TOT_HRS_CONFIG | Total hours since last configuration change. Reset through write accesses to:<br>TB.SENSOR_TYPE, TB.CAL_MODE, TB.LIN_TYPE, AIFB.XD_SCALE, AIFB.OUT_SCALE, AIFB.<br>LIN_TYPE.                                                                                                                                                                             |
| LCD_SELECTOR   | Selects the numerical value (parameter) shown on the LC-Display.<br>0 = PRIMARY_VALUE of the Transducer Block (TB).<br>1 = OUT process variable of the Analog Input Function Block (AIFB).<br>2 = TB.PRIMARY_VALUE with units string in parameter LCD_EGU.<br>3 = AIFB.OUT with units string in parameter LCD_EGU.                                       |
| LCD_EGU        | Contains the string which can be displayed when parameter LCD_SELECTOR is set to use it. The 5 bytes are the text shown on the LCDs 5 x 11 segment digits. Example: "-5.6700KARAT".                                                                                                                                                                      |
| LCD_PRECISION  | This parameter selects the maximum precision of the value shown on the LCD's 5 large alphanumeric digits. If the size of the integer part of the value is too great, then the number of decimal places is reduced to fill the character space available. Maximum display value is ±99999.<br>0 = 0 digits<br>1 = 1 digit<br>2 = 2 digits<br>3 = 3 digits |
| SERVICE_CODE   | For Moore Industries Use                                                                                                                                                                                                                                                                                                                                 |
| SW_REVISION    | TFZ software revision - visible string format of MII Software Version:<br>" <major revision="">-<minor revision="">-<build number="">" e.g. "1-0-20" = V1.0.20</build></minor></major>                                                                                                                                                                   |
| HW_REVISION    | TFZ hardware revision - visible string format of MII Software Version:<br>" <major revision="">-<minor revision="">", e.g. "1-23" = V1.23.</minor></major>                                                                                                                                                                                               |
| MODEL_NUMBER   | Holds the device model, which describes its hardware configuration.                                                                                                                                                                                                                                                                                      |
| DEVICE_ID      | Moore Industries unique device identification - holds the MII serial number of the device. The DEVICE_<br>ID parameter contributes to the FF DEVICE_ID object, described in <i>DEVICE ID</i> section of this manual.                                                                                                                                     |
| LCD_ADDR_MODE  | Decides the number base that the node address is displayed in 0 for hexadecimal; 1 for decimal. If the mode is set decimal, and the value is greater than 99 then dashes are displayed instead (i.e. '').                                                                                                                                                |
| INSTALL_DATE   | Date string indicating when device was calibrated in the factory.                                                                                                                                                                                                                                                                                        |

Table 8. Description of Resource Block Parameters

#### Temperature Transducer Block (Index Number 1200)

The Temperature Transducer Block (TB) contains temperature measurement data, including sensor and terminal temperature. It also includes information about the sensor type, engineering units, linearization, re-ranging, damping, temperature compensation and diagnostics. Some of the units that the TB settings are expressed in are influenced by the AIFB.XD\_SCALE parameter. When XD\_SCALE's engineering units are changed to a different unit which is still compatible with TB.SENSOR\_TYPE, then all other values expressed in engineering units in the TB, including TB.PRIMARY\_VALUE\_RANGE and TB.CAL\_UNIT, will change to the same units.

Refer to the *List of Abbreviations* table on Page 14 for an explanation of abbreviations used in the table below.

| Parameter<br>Mnemonic    | Rel.<br>Index | Obj<br>Type | Data Type<br>Structure | Store | Size | Valid<br>Range                                                                               | Initial<br>Value                                   | Unit | Mode | Other     | Range<br>Check |
|--------------------------|---------------|-------------|------------------------|-------|------|----------------------------------------------------------------------------------------------|----------------------------------------------------|------|------|-----------|----------------|
| STANDARD<br>PARAMETER    | 06            |             |                        |       |      |                                                                                              |                                                    |      |      |           |                |
| UPDATE_EVT               | 7             | R           | DS-73                  | D     | 14   |                                                                                              | 0;0;0,0;0;<br>0x0900                               | na   |      | Read only |                |
| BLOCK_ALM                | 8             | R           | DS-72                  | D     | 13   |                                                                                              | 0;0;0,0;0;0                                        | na   |      |           |                |
| TRANSDUCER_<br>DIRECTORY | 9             | S           | Unsigned 16            | N     | 2    |                                                                                              | 0                                                  | none |      | Read only |                |
| TRANSDUCER_<br>TYPE      | 10            | S           | Unsigned16             | N     | 2    | See Standard<br>Tables Specifica-<br>tion (FF-131)                                           | 101: Standard<br>Temperature<br>with calibration   | E    |      | Read only |                |
| XD_ERROR                 | 11            | S           | Unsigned8              | D     | 1    |                                                                                              | 0                                                  | E    |      | Read only |                |
| COLLECTION_<br>DIRECTORY | 12            | s           | Unsigned 32            | N     | 4    |                                                                                              | 0                                                  | none |      | Read only |                |
| PRIMARY_<br>VALUE_TYPE   | 13            | s           | Unsigned16             | S     | 2    | 104: Process<br>Temperature                                                                  | 104: Process<br>Temperature                        | E    | O/S  |           | Yes            |
| PRIMARY_VALUE            | 14            | R           | DS-65                  | D     | 5    |                                                                                              | 0;0.0                                              | PVR  |      | Read only |                |
| PRIMARY_<br>VALUE_RANGE  | 15            | R           | DS-68                  | N     | 11   |                                                                                              | 960.0;<br>-240.0;<br>1001 : °C;<br>3: 3dec. places | PVR  |      | Read only |                |
| CAL_POINT_HI             | 16            | s           | Float                  | S     | 4    |                                                                                              | 960.0                                              | CU   | O/S  |           | Yes            |
| CAL_POINT_LO             | 17            | S           | Float                  | S     | 4    |                                                                                              | -240.0                                             | CU   | O/S  | Read only | Yes            |
| CAL_MIN_SPAN             | 18            | S           | Float                  | N     | 4    |                                                                                              | 120.0                                              | CU   |      | Read only |                |
| CAL_UNIT                 | 19            | S           | Unsigned16             | S     | 2    | 1000: °K<br>1001: °C<br>1002: °F<br>1003: °R<br>1211: mA<br>1240: V<br>1243: mV<br>1281: Ohm | 1001: °C                                           | E    |      |           |                |
| SENSOR_TYPE              | 20            | s           | Unsigned16             | S     | 2    | See Table 18                                                                                 | 128:<br>Pt100_1_385                                | E    | O/S  |           | Yes            |
| SENSOR_RANGE             | 21            | R           | DS-68                  | N     | 11   | 0-100%                                                                                       | 960.0;<br>0.0;<br>1001: °C;<br>3: 3dec. places     | SR   |      | Read only |                |
| SENSOR_SN                | 22            | S           | Visible<br>String      | N     | 32   |                                                                                              | 32 x '-'                                           | none |      | Read only |                |
| SENSOR_CAL_<br>METHOD    | 23            | S           | Unsigned8              | S     | 1    | 103: Factory<br>Standard                                                                     | 103: Factory<br>Standard                           | E    | O/S  |           | Yes            |

Table 9. Temperature Transducer Block Parameters

Continued on next page

| Parameter<br>Mnemonic    | Rel.<br>Index | Obj<br>Type | Data Type<br>Structure | Store | Size | Valid<br>Range                                            | Initial<br>Value | Unit | Mode | Other     | Range<br>Check |
|--------------------------|---------------|-------------|------------------------|-------|------|-----------------------------------------------------------|------------------|------|------|-----------|----------------|
| SENSOR_CAL_<br>LOC       | 24            | S           | Visible<br>String      | S     | 32   |                                                           | 32 x ' '         | none |      | Read only |                |
| SENSOR_CAL_<br>DATE      | 25            | S           | Date                   | S     | 7    |                                                           | 0,0,0,1,1,84     | none |      | Read only |                |
| SENSOR_CAL_<br>WHO       | 26            | S           | Visible<br>String      | S     | 32   |                                                           | 32 x ' '         | none |      | Read only |                |
| SENSOR_<br>CONNECTION    | 27            | S           | Unsigned8              | S     | 1    | 2: 2-wire<br>3: 3-wire<br>4: 4-wire                       | 4: 4-wire        | E    | O/S  |           | Yes            |
| SECONDARY_<br>VALUE      | 28            | R           | DS-65                  | D     | 5    |                                                           |                  | SVU  |      | Read only |                |
| SECONDARY_<br>VALUE_UNIT | 29            | S           | Unsigned16             | S     | 2    | See Table 15<br>1000: K<br>1001: C<br>1002: F<br>1003: °R | 1001: °C         | E    |      |           | Yes            |
| MODULE_SN                | 30            | s           | Visible<br>String      | N     | 32   |                                                           | null             | none |      | Read only |                |

Table 9. Continued

Continued on next page

#### Table 9. Continued

| Manufacturer S           | Manufacturer Specific |             |                        |       |      |                                                                                                                                                                                   |                  |      |      |           |                |
|--------------------------|-----------------------|-------------|------------------------|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|------|-----------|----------------|
| Parameter<br>Mnemonic    | Rel.<br>Index         | Obj<br>Type | Data Type<br>Structure | Store | Size | Valid<br>Range                                                                                                                                                                    | Initial<br>Value | Unit | Mode | Other     | Range<br>Check |
| SENSOR_STATUS            | 31                    | S           | Unsigned16             | D     | 2    |                                                                                                                                                                                   | 0                | E    |      | Read only |                |
| BROKE_WIRE_<br>DETECTION | 32                    | S           | Unsigned8              | S     | 1    | 0: Off<br>1: On                                                                                                                                                                   | 1: On            | E    | O/S  |           | Yes            |
| RUN_AVG_FILTER           | 33                    | S           | Unsigned8              | S     | 1    | 116                                                                                                                                                                               | 4                |      | O/S  |           | Yes            |
| INPUT_FILTER             | 34                    | S           | Unsigned8              | N     | 1    | 0: 60Hz<br>1: 50Hz                                                                                                                                                                | 0: 60Hz          | E    | O/S  |           | Yes            |
| CAL_MODE                 | 35                    | S           | Unsigned8              | S     | 1    | 0: no cal trim<br>1: 1 point trim<br>2: 2 point trim                                                                                                                              | 0: no cal trim   | none | O/S  |           | Yes            |
| CAL_VALUE_HI             | 36                    | S           | Float                  | S     | 4    |                                                                                                                                                                                   | 960.0            | CU   | O/S  |           | Yes            |
| CAL_VALUE_LO             | 37                    | S           | Float                  | S     | 4    |                                                                                                                                                                                   | -240.0           | CU   | O/S  |           | Yes            |
| LIN_TYPE                 | 38                    | S           | Unsigned8              | S     | 1    | 1: linear<br>255: custom<br>curve fit                                                                                                                                             | 1: linear        | E    | O/S  |           | Yes            |
| TAB_ENTRY                | 39                    | S           | Unsigned8              | D     | 1    | 1 to 128                                                                                                                                                                          | 0: undefined     | none |      |           | Yes            |
| TAB_X_VALUE              | 40                    | S           | Float                  | D     | 4    |                                                                                                                                                                                   | 0.0              | CU   | O/S  |           |                |
| TAB_Y_VALUE              | 41                    | S           | Float                  | D     | 4    |                                                                                                                                                                                   | 0.0              | CU   | O/S  |           |                |
| TAB_OP_CODE              | 42                    | S           | Unsigned8              | D     | 1    | 0: no action;<br>1: start loading<br>new table;<br>3: end of new<br>table;<br>8: return to<br>dormant state;<br>255: clear table                                                  | 0: no action     | none | O/S  |           | Yes            |
| TAB_STATUS               | 43                    | S           | Unsigned8              | D     | 1    | 0: un-initialized<br>1: good<br>2: unincr use<br>old<br>3: undecr.use<br>old<br>4: incomplete<br>old<br>8: loading<br>9: checking<br>20: unincr.<br>21: undecr.<br>22: incomplete | 0: uninitialized | none |      | Read only |                |
| TAB_ACTUAL_<br>NUMBER    | 44                    | S           | Unsigned8              | Ν     | 1    | 2 - 128                                                                                                                                                                           | 0: uninitialized | none |      | Read only |                |
| UPPER_RANGE_<br>VALUE    | 45                    | S           | Float                  | S     | 4    |                                                                                                                                                                                   | 960.0            | PVR  | O/S  |           |                |
| LOWER_RANGE_<br>VALUE    | 46                    | S           | Float                  | S     | 4    |                                                                                                                                                                                   | -240.0           | PVR  | O/S  |           |                |
| USE_RJC                  | 47                    | S           | Unsigned8              | S     | 1    | 0: No<br>1: Yes                                                                                                                                                                   | 1:Yes            | none |      |           | Yes            |

**Description of Transducer Block Parameters** The parameters listed in the following table are used to configure the TFZ's application process to the required function. The parameters are organized into DD groups.

| Table 10. | Description of | of Transducer | Block Pa | arameters |
|-----------|----------------|---------------|----------|-----------|
|           |                |               |          |           |

| Sensors with Calibration Calculation Group |                                                                                                                                                                                                                           |  |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Parameter                                  | Description                                                                                                                                                                                                               |  |  |  |  |
| PRIMARY_VALUE_TYPE                         | Defines the type of calculation, from the list found in the Standard Table Specification (FF-131). For the TFZ, this is fixed at 104 - Process Temperature.                                                               |  |  |  |  |
| PRIMARY_VALUE                              | Primary process variable value and status that appears on channel 1.                                                                                                                                                      |  |  |  |  |
| PRIMARY_VALUE_RANGE                        | Defines the range of the PRIMARY_VALUE, and also the units and the decimal point position (number of significant digits to the right of the point).                                                                       |  |  |  |  |
| CAL_POINT_HI                               | The PRIMARY_VALUE setting used for the field calibration (trimming) high point. Defines the upper trim point. Must be at least CAL_MIN_SPAN away from CAL_POINT_LO, and at or below the high range value of SENSOR_RANGE. |  |  |  |  |
| CAL_POINT_LO                               | The PRIMARY_VALUE setting used for the field calibration (trimming) low point. Defines the lower trim point. Must be at least CAL_MIN_SPAN away from CAL_POINT_HI, and at or above the low range value of SENSOR_RANGE.   |  |  |  |  |
| CAL_MIN_SPAN                               | Defines the absolute minimum span between CAL_POINT_HI and CAL_POINT_LO. Will always be 10% of the PRIMARY_VALUE_RANGE span between 0% and 100% settings.                                                                 |  |  |  |  |
| CAL_UNIT                                   | Defines the engineering units to be used when field calibration (trimming) the device. Will always be the same as the PRIMARY_VALUE_RANGE units.                                                                          |  |  |  |  |
| Base Sensors with C                        | alibration Technology Group                                                                                                                                                                                               |  |  |  |  |
| Parameter                                  | Description                                                                                                                                                                                                               |  |  |  |  |
| SENSOR_TYPE                                | Defines the type of sensor, from the list in the Standard Table Specification (FF-131). Refer to Table 18.                                                                                                                |  |  |  |  |
| SENSOR_RANGE                               | Defines the sensor range, the units of those limits, and the decimal point position (number of significant digits to the right of the point).                                                                             |  |  |  |  |
| SENSOR_SN                                  | Shows the sensor serial number.                                                                                                                                                                                           |  |  |  |  |
| SENSOR_CAL_LOC                             | Last calibration location.                                                                                                                                                                                                |  |  |  |  |
| SENSOR_CAL_DATE                            | Last calibration date.                                                                                                                                                                                                    |  |  |  |  |
| SENSOR_CAL_WHO                             | Identifies the body that last calibrated the sensor.                                                                                                                                                                      |  |  |  |  |
| MODULE_SN                                  | The module serial number.                                                                                                                                                                                                 |  |  |  |  |
| Extended Temperatur                        | re Sensor Technology Group                                                                                                                                                                                                |  |  |  |  |
| Parameter                                  | Description                                                                                                                                                                                                               |  |  |  |  |
| SENSOR_CONNECTION                          | Defines the connections used by the sensor.                                                                                                                                                                               |  |  |  |  |
| Secondary Value Tecl                       | nnology Group                                                                                                                                                                                                             |  |  |  |  |
| Parameter                                  | Description                                                                                                                                                                                                               |  |  |  |  |
| SECONDARY_VALUE                            | Gives the body temperature. This is used as the reference junction temperature for reference junction compensation of thermocouples.                                                                                      |  |  |  |  |
| SECONDARY_VALUE                            | Defines the engineering units to be used with SECONDARY_VALUE.                                                                                                                                                            |  |  |  |  |

Continued on next page

19

#### Table 10. Continued

| Manufacturer Specific Extens | ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SENSOR_STATUS                | Additional status word from the sensor.<br>Bit 0 = wire 1 broken (Note 1)<br>Bit 1 = wire 2 broken (Note 1)<br>Bit 2 = wire 3 broken (Note 1)<br>Bit 3 = wire 4 broken (Note 1)<br>Bit 4 = Analog input 1 saturated<br>Bit 5 = Analog input 2 saturated<br>Bit 6 = Out of range input value (RTD / thermocouple table limits exceeded)<br>Bit 7 = RJC broken<br>Bit 8 = No input<br>Bit 9 = ADC failure (ADC interrupt is not firing)<br>Bit 10 = run time error<br>Bit 11 = bad lead resistance (3 wire RTD / resistance)<br>Bit 12 = bad UFE configuration data<br>Bit 13 = bad calibration data<br>Bit 14 = linearization failure<br>Bit 15 = calibration active |
|                              | configured for use are indicated as broken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BROKE_WIRE_DETECTION         | 0 = disabled<br>1 = enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RUN_AVG_FILTER               | Number of measurement values to use for the moving average filter (116).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| INPUT_FILTER                 | This parameter selects the notch frequency of the input filter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              | 0 = 60Hz<br>1 = 50Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CAL_MODE                     | Field calibration (trimming) mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | 0 = no trimming<br>1 = 1-point trimming (only using lower trim point)<br>2 = 2-point trimming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CAL_VALUE_HI                 | The PRIMARY_VALUE measurement at the field calibration (trimming) high point.<br>Is used as the upper trim value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CAL_VALUE_LO                 | The PRIMARY_VALUE measurement at the field calibration (trimming) low point.<br>Is used as the lower trim value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LIN_TYPE                     | Custom curve selector:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | 1 = Linear with input; no custom curve use (PV is linear with sensor)<br>255 = Other; use custom curve linearization on PV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TAB_ENTRY                    | Index of custom curve table entry that is available in TAB_X_VALUE and TAB_Y_VALUE pairs. Writable to only when valid table is loaded, and a new table is not being loaded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TAB_X_VALUE                  | Holds unlinearized PV values. If loading a new table, then contains the last X-value loaded (0.0 if none loaded yet), or the X-value of the table indexed by TAB_ENTRY if table is valid (0.0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TAB_Y_VALUE                  | Holds linearized PV values, should custom linearization be enabled. If loading a new table, then contains the last Y-value loaded (0.0 if none loaded yet), or the Y-value of the table indexed by TAB_ENTRY if table is valid (0.0).                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TAB_OP_CODE                  | Used to control loading of new custom curve table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | <ul> <li>0 = No action; Solicits no change to the linearization status.</li> <li>1 = Start new table; Prepare to collate a new table to receive data. Pairs of data are loaded into TAB_X_VALUE and TAB_Y_VALUE pairs according to size of table - up to maximum 128 points.</li> <li>3 = End new table; Received table is checked. If it is valid then it is loaded as the custom curve table to use.</li> <li>8 = Ready; Current table is verified. Result given in TAB_STATUS.</li> </ul>                                                                                                                                                                        |
|                              | 255 = Reset table; Table cleared down to two points - (0.0,0.0) and (100.0,100.0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Continued on next page

#### Table 10. Continued

| Parameter         | Description                                                                                                                                                                                                                                                                                                             |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TAB_STATUS        | Indicates table loading status:<br>0 = un-initialized<br>1 = valid table loaded<br>2 = new value should be increasing, but is not - using resident valid table<br>3 = new value should be decreasing, but is not - using resident valid table<br>4 = not enough values to make valid table - using resident valid table |
|                   | 8 = loading new table<br>9 = checking new table<br>20 = new value should be increasing, but is not<br>21 = new value should be decreasing, but is not<br>22 = not enough value to make valid table                                                                                                                      |
| TAB_ACTUAL_NUMBER | Size of loaded table.                                                                                                                                                                                                                                                                                                   |
| UPPER_RANGE_VALUE | Level above which UFE indicates above upper limit (write -987654.0 to capture a new upper range value off the PV).                                                                                                                                                                                                      |
| LOWER_RANGE_VALUE | Level below which UFE indicates below lower limit<br>(write -987654.0 to capture a new lower range value off the PV).                                                                                                                                                                                                   |

#### Range Checks

Range Checks are performed in the TFZ for specific parameters. The following table details the allowed values of these parameters.

#### Table 11. Range Checks

| Transducer Block            | Permissable Value                                                                                                                 |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| CAL_POINT_HI                | (CAL_POINT_LO + CAL_MIN_SPAN) up to EU_100 of PVR                                                                                 |
| CAL_POINT_LO                | EU_0 of PVR up to (CAL_POINT_HI - CAL_MIN_SPAN)                                                                                   |
| PRIMARY_VALUE_TYPE          | The PRIMARY_VALUE_TYPE is fixed to 104 = Process temperature.                                                                     |
| CAL_UNIT                    | Same as TB.PRIMARY_VALUE_RANGE units. See Table 15 for possible values.                                                           |
| SENSOR_TYPE                 | See Table 18                                                                                                                      |
| SENSOR_CAL_METHOD           | 103 – Factory standard calibration.                                                                                               |
| SENSOR_CONNECTION           | 2 – 2 wires<br>3 – 3 wires<br>4 – 4 wires                                                                                         |
| SECONDARY_VALUE_UNIT        | 1000 – K<br>1001 – °C<br>1002 – °F<br>1003 – °R                                                                                   |
| Analog Input Function Block | Permissable Value                                                                                                                 |
| XD_SCALE, Unit index        | Has to be the same as PRIMARY_VALUE_RANGE units for Analog Input block to avoid<br>block error. See Table 15 for possible values. |

### The transducer block can generate the XD\_ERROR and BLOCK\_ALM subcodes shown below.

#### Table 12. XD\_ERROR and Block Subcodes

| Value | Error                | Subcode Description                                                                                                                               |
|-------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 16    | Unspecified error    | An error has occurred that was not identified.                                                                                                    |
| 17    | General error        | An error has occurred that could not be classified as one of the errors below.                                                                    |
| 18    | Calibration error    | An error occurred during calibration of the device or a calibration error has been detected during operation of the device.                       |
| 19    | Configuration error  | An error occurred during configuration of the device or a configuration error has been detected dur-<br>ing operation of the device.              |
| 20    | Electronics Failure  | An electronic component has failed.                                                                                                               |
| 21    | Mechanical Failure   | A mechanical component has failed.                                                                                                                |
| 22    | I/O Failure          | An I/O failure has occurred.                                                                                                                      |
| 23    | Data Integrity Error | Indicates that data stored within the system may no longer be valid due to NVM checksum failure, data verify after write failure, etc.            |
| 24    | Software Error       | The software has detected an error. This could be caused by an improper interrupt service routine, an arithmetic overflow, a watchdog timer, etc. |
| 25    | Algorithm Error      | The algorithm used in the transducer block produced an error. This could be due to an overflow, data reasonableness failure, etc.                 |

The *Mapping of SENSOR\_STATUS* table, below, defines how sensor status provided by the UFE software is mapped to the status of the PV/SV, the XD\_ERROR and the Block Alarm Subcodes.

If there is an XD\_ERROR alarm subcode, then the transducer block will indicate a block error. This will force the Transducer Block (and the AI Block) Out of Service.

 Table 13.
 Mapping of SENSOR\_STATUS

| SENSOR_STATUS | Description                                                      | XD_ERROR,<br>Block Alarm<br>Subcode | PRIMARY_VALUE<br>status<br>Secondary_Value<br>status |                |  |
|---------------|------------------------------------------------------------------|-------------------------------------|------------------------------------------------------|----------------|--|
|               |                                                                  |                                     | Quality                                              | Sub-Status     |  |
| Bit 0         | Wire 1 broken                                                    | 20                                  | BAD                                                  | Sensor failure |  |
| Bit 1         | Wire 2 broken                                                    | 20                                  | BAD                                                  | Sensor failure |  |
| Bit 2         | Wire 3 broken                                                    | 20                                  | BAD                                                  | Sensor failure |  |
| Bit 3         | Wire 4 broken                                                    | 20                                  | BAD                                                  | Sensor failure |  |
| Bit 4         | Analog input 1 saturated                                         | 20                                  | BAD                                                  | Sensor failure |  |
| Bit 5         | Analog input 2 saturated                                         | 20                                  | BAD                                                  | Sensor failure |  |
| Bit 6         | Out of range input value                                         | 20                                  | BAD                                                  | Sensor failure |  |
| Bit 7         | RJC broken                                                       | 20                                  | BAD                                                  | Sensor failure |  |
| Bit 8         | No input                                                         | 20                                  | BAD                                                  | Sensor failure |  |
| Bit 9         | ADC failure (ADC interrupt is not firing)                        | 20                                  | BAD                                                  | Device failure |  |
| Bit 10        | Run time error                                                   | 24                                  | BAD                                                  | Device failure |  |
| Bit 11        | Bad lead resistance<br>(3 wire RTD / resistance)                 | 20                                  | BAD                                                  | Sensor failure |  |
| Bit 12        | Bad UFE configuration                                            | 19                                  | BAD                                                  | Config. Error  |  |
| Bit 13        | Bad calibration data                                             | 18                                  | BAD                                                  | Config. Error  |  |
| Bit 14        | Linearization failure (RTD / thermocouple table limits exceeded) | 20                                  | BAD                                                  | Sensor failure |  |
| Bit 15        | Calibration active                                               | 20                                  | BAD                                                  | Sensor failure |  |

#### Table 14. Sensor Connections

| Value | Connection Type Description |
|-------|-----------------------------|
| 2     | 2 wires                     |
| 3     | 3 wires                     |
| 4     | 4 wires                     |

#### **Default Sensor Connections**

When the SENSOR\_TYPE is changed, the SENSOR\_CONNECTIONS parameter is re-configured depending upon the new sensor type:

mV or V– 2 wires Ohm– 4 wires RTD– 3 wires Potentiometer– 3 wires mA– 2 wires

Connection settings for resistance readings (Ohms) can be changed to 2-, 3- or 4-wire once configured for the required sensor type. The table below lists the unit codes supported by the TFZ.

<u>Note:</u> For the SECONDARY\_VALUE\_UNIT, only temperature unit codes are allowed.

Table 15. Supported Unit Codes

| Unit Code | Description                      |  |
|-----------|----------------------------------|--|
| 1000      | Kelvin                           |  |
| 1001      | ⊃°C                              |  |
| 1002      | °F                               |  |
| 1003      | °Rankine                         |  |
| 1211      | mA                               |  |
| 1243      | mV                               |  |
| 1281      | Ohm                              |  |
| 1342      | % (used for potentiometer input) |  |

### Analog Input Block (Index Number 1100)

The Analog Input Function Block (AI) processes measurements from a sensor and makes them available to other function blocks. The output value from the AI block is displayed in engineering units and contains a status indicating the quality of the measurement. The AI block is widely used for its scaling functionality.

#### Note:

The AI block has its own filtering parameter called PV\_FTIME. If filtering is performed in the AI block, damping will be applied to the output every macro cycle.

Refer to the *List of Abbreviations* table on Page 14 for an explanation of abbreviations used in the following table.

#### Table 16. Analog Input Function Block Parameters

| Manufacturer S        | Manufacturer Specific |             |                        |       |      |                                                                                                  |                              |      |      |           |                |
|-----------------------|-----------------------|-------------|------------------------|-------|------|--------------------------------------------------------------------------------------------------|------------------------------|------|------|-----------|----------------|
| Parameter<br>Mnemonic | Rel.<br>Index         | Obj<br>Type | Data Type<br>Structure | Store | Size | Valid<br>Range                                                                                   | Initial<br>Value             | Unit | Mode | Other     | Range<br>Check |
| STANDARD<br>PARAMETER | 06                    |             |                        |       |      |                                                                                                  |                              |      |      |           |                |
| PV                    | 7                     | R           | DS-65                  | D     | 5    |                                                                                                  | Bad non-<br>specific; 0.0    | PV   |      | Read only |                |
| OUT                   | 8                     | R           | DS-65                  | D     | 5    |                                                                                                  | Bad Out of Ser-<br>vice; 0.0 | OUT  | Man  |           |                |
| SIMULATE              | 9                     | R           | DS-82                  | D     | 11   |                                                                                                  | 0;0.0;0;0.0;1                | none |      |           |                |
| XD_SCALE              | 10                    | R           | DS-68                  | s     | 11   |                                                                                                  | 100.0;0.0;1001;0             | XD   | O/S  |           |                |
| OUT_SCALE             | 11                    | R           | DS-68                  | S     | 11   |                                                                                                  | 100.0;0.0;1001;2             | OUT  | O/S  |           |                |
| GRANT_DENY            | 12                    | R           | DS-70                  | S     | 2    |                                                                                                  | 0; 0                         | na   |      |           |                |
| IO_OPTS               | 13                    | S           | Bit String             | S     | 2    |                                                                                                  | 0                            | na   | O/S  |           |                |
| STATUS_OPTS           | 14                    | S           | Bit String             | s     | 2    |                                                                                                  | 0                            | na   | O/S  |           |                |
| CHANNEL               | 15                    | S           | Unsigned16             | S     | 2    | 1 : PRIMARY_<br>VALUE<br>(sensor input);<br>2 : SECONDARY_<br>VALUE (device<br>body temperature) | 1 : PRIMARY_<br>VALUE        | E    | O/S  |           | Yes            |
| L_TYPE                | 16                    | S           | Unsigned8              | S     | 1    | 1:Direct;<br>2:Indirect; 3:Ind.<br>Sqr.Root                                                      | 2:Indirect                   | E    | Man  |           | Yes            |
| LOW_CUT               | 17                    | S           | Float                  | S     | 4    | Non-negative                                                                                     | 0.0                          | OUT  | O/S  | Positive  | Yes            |
| PV_FTIME              | 18                    | S           | Float                  | S     | 4    | Non-negative                                                                                     | 0.0                          | s    |      | Positive  | Yes            |
| FIELD_VAL             | 19                    | R           | DS-65                  | D     | 5    |                                                                                                  | 0;0.0                        | %    |      | Read only |                |
| UPDATE_EVT            | 20                    | R           | DS-73                  | D     | 14   |                                                                                                  | 0;0;0,0;0;<br>0x0900         | na   |      | Read only |                |
| BLOCK_ALM             | 21                    | R           | DS-72                  | D     | 13   |                                                                                                  | 0;0;0,0;0;0                  | na   |      |           |                |
| ALARM_SUM             | 22                    | R           | DS-74                  | S     | 8    |                                                                                                  | 0;0;0;0                      | na   |      |           |                |
| ACK_OPTION            | 23                    | S           | Bit String             | S     | 2    | 0: Auto Ack<br>Disabled;<br>1: Auto Ack<br>Enabled                                               | 0                            | na   |      |           |                |
| ALARM_HYS             | 24                    | S           | Float                  | S     | 4    | 0 to 50%<br>of range                                                                             | 0.5                          | %    |      | Positive  | Yes            |
| HI_HI_PRI             | 25                    | S           | Unsigned8              | s     | 1    | 0 to 15                                                                                          | 0                            | none |      |           | Yes            |
| HI_HI_LIM             | 26                    | S           | Float                  | S     | 4    |                                                                                                  | +Inf                         | OUT  |      |           |                |
| HI_PRI                | 27                    | S           | Unsigned8              | s     | 1    | 0 to 15                                                                                          | 0                            | none |      |           | Yes            |
| HI_LIM                | 28                    | S           | Float                  | s     | 4    |                                                                                                  | +Inf                         | OUT  |      |           |                |
| LO_PRI                | 29                    | S           | Unsigned8              | s     | 1    | 0 to 15                                                                                          | 0                            | none |      |           | Yes            |
| LO_LIM                | 30                    | S           | Float                  | S     | 4    |                                                                                                  | +Inf                         | OUT  |      |           |                |
| LO_LO_PRI             | 31                    | S           | Unsigned8              | S     | 1    | 0 to 15                                                                                          | 0                            | none |      |           | Yes            |
| LO_LO_LIM             | 32                    | S           | Float                  | S     | 4    |                                                                                                  | +Inf                         | OUT  |      |           |                |
| HI_HI_ALM             | 33                    | R           | DS-71                  | D     | 16   |                                                                                                  |                              |      |      |           |                |
| HI_ALM                | 34                    | R           | DS-71                  | D     | 16   |                                                                                                  |                              |      |      |           |                |
| LO_ALM                | 35                    | R           | DS-71                  | D     | 16   |                                                                                                  |                              |      |      |           |                |
| LO_LO_ALM             | 36                    | R           | DS-71                  | D     | 16   |                                                                                                  |                              |      |      |           |                |

### Description of Analog Input Block Parameters

Parameters required to configure the AI Block are described below.

#### Channels

Select the channel that corresponds to the desired sensor measurement. The TFZ measures both the sensor temperature (Channel 1) and the terminal temperature (Channel 2).

#### L\_TYPE

The L\_TYPE parameter defines the relationship of the sensor measurement (sensor temperature) to the desired output temperature of the AI Block. This can be either a direct or indirect relationship.

Select direct when the desired output will be the same as the sensor measurement (sensor temperature).

Select indirect when the desired output is a calculated measurement based on the sensor measurement (e.g. ohm or mV). The relationship between both measurements is linear.

The XD\_SCALE and OUT\_SCALE each include four parameters: 0%, 100%, engineering units and precision (decimal point). Their use is determined by the L\_TYPE setting.

#### When L\_TYPE is Direct

When the desired output is the measured variable, set the XD\_SCALE to represent the operating range of the process. Set OUT\_SCALE to match XD\_SCALE.

#### When L\_TYPE is Indirect

When an inferred measurement is made based on the sensor measurement, set the XD\_SCALE to represent the operating range that will be used in the process. Determine the inferred measurement values that correspond to the XD\_SCALE's 0 and 100% points and set these for the OUT\_SCALE.

#### **Primary Value Unit**

Select the desired measurement unit code using the XD\_SCALE and OUT\_SCALE parameters which are found in the Analog Input Function Block (refer to FF-890, section 4.4.3.9–Scaling Parameter Formal Model– for further details).

To avoid configuration errors when setting up the XD\_SCALE units, select only engineering units that are fully supported by the TFZ. The supported units are:  $^{\circ}$ K,  $^{\circ}$ C,  $^{\circ}$ F,  $^{\circ}$ R, mA, mV, ohms and %.

When the engineering units of the AIFB.XD\_SCALE are changed to new units that are compatible with the current Transducer Block configured sensor (TB.SEN-SOR\_TYPE), then the Transducer Block Primary Value (i.e. TB.PRIMARY\_VALUE\_RANGE), and all related parameters will also be set to that units setting.

#### Filtering

The filtering feature changes the response time of the TFZ to smooth variations in output readings caused by rapid changes to the input. To adjust the filter time constant (in seconds), use the PV\_FTIME parameter. To disable the filter feature, set the filter time constant to zero.

#### **Process Alarms**

Process Alarm detection is based on the OUT value. Configure the alarm limits of the following standard alarms to the desired settings.

HI\_LIM (High) HI\_HI\_LIM (High high) LO\_LIM (Low) LO\_LO\_LIM (Low low)

In order to avoid alarm chattering when the variable is oscillating around the alarm limit, an alarm hysteresis (in percent of the PV span) can be set using the ALARM\_HYS parameter. The priority of each alarm is set in the HI\_PRI, HI\_HI\_PRI, LO\_PRI and LO\_LO\_ PRI parameters.

#### Alarm Priority

Refer to the table below for alarm priority levels.

#### Table 17. Alarm Priority Levels

| Priority Status | Priority Description                                                             |
|-----------------|----------------------------------------------------------------------------------|
| 0               | The alarm condition is not used.                                                 |
| 2               | An alarm condition with a priority of 2 is reported to the operator.             |
| 3 - 7           | Alarm conditions of priority 3 to 7 are advisory alarms of increasing priority.  |
| 8 - 15          | Alarm conditions of priority 8 to 15 are critical alarms of increasing priority. |

#### **Status Options**

Status Options (STATUS\_OPTS) supported by the AI Block are shown below.

#### **Propagate Fault Forward**

If status from the sensor registers as Bad, Device failure or Bad, Sensor failure, propagate it to OUT without generating an alarm. Use of the sub-status in OUT is determined by this option. Through this option, you may choose whether alarming (sending of an alert) will be done by the block or propagated downstream.

#### **Uncertain if Limited**

Set the output status of the Analog Input Block to *Uncertain* if the measured or calculated value is Limited.

#### **BAD if Limited**

Set the output status to *Bad* if the sensor exceeds a high, or falls below a low, limit.

#### Uncertain if Man Mode

Set the output status of the AI Block to *Uncertain* if the block is in MAN mode.

#### Note:

The TFZ must be in Out of Service mode to set the status option.

### **Input Settings**

There are a number of basic Transducer Block parameters that directly govern the operation of the TFZ which include:

#### Input Type

Input Type is governed by the TB Sensor Type parameter. The options available come from five groups which include RTDs (by resistor type and 0°C resistance), thermocouples (by type), voltage, resistance (ohms), and potentiometers. For mV, resistance and potentiometer sensor types, different values are available.

#### **Measurement Units**

For non-temperature measurement input types, the units of the process value are limited by the measurement. Resistances are measured in ohms; potentiometer inputs are measured in percentage of wiper resistance against the full range resistance; voltage is measured in mV.

Temperature measurment input types can return results in one of four temperature units: °C, °F, °R, or K.

When the TB measuring units change, the AIFB.XD\_ SCALE units have to be separately changed to the same unit, or the AIFB will have a block error, resulting in a Bad status. Therefore, for ohms, potentiometers, voltage and temperature sensor types, the AIFB. XD\_SCALE units will have to be set to ohms, %, mV and °C, respectively. If using a temperature sensor type, then AIFB.XD\_SCALE units can be changed to another temperature unit, if required.

#### **Input Filter**

This setting is used to configure the analog to digital input filter. The filter is designed to reduce the effects of mains-induced noise. The input filter frequency value should be set to the frequency of the local AC supply, either 50Hz or 60Hz.

#### **Broken Wire Detection**

During operation, the TFZ sends random microamp pulses through input wiring to check for broken wiring or a burned out sensor. To utilize Broken Wire Detection, set the TB parameter to On. If a failure is detected, then the AIFB.OUT status will become Bad, and an error message will appear on the display indicating which wire is broken, or, if unable to determine which, simply that wires are broken.

#### **Running Average Filter**

This function is for smoothing the converted input signal. The TFZ provides this filter with a userselected range between 1 and 16. Factory default is 4.

#### Note:

A higher Running Average Filter setting provides smoother output transitions, but reduces response time; conversely, a lower setting provides a faster response time, but may seem more unstable.

#### Sensor Range

When the input signal is outside of the user-defined sensor range, this constitutes a sensor error which is indicated on the FF network and displayed status. The default sensor range is readjusted in the TB Sensor Range parameter whenever a sensor type is changed. This follows any change in temperature units, and is held in the Upper and Lower Range values. The Upper and Lower Range values can be changed to different values, causing the out of range indication to occur even when the input signals are in accordance with the installation.

To set specific Upper and Lower Range values, you may enter them into the respective parameters. The values may also be captured. To capture an input, follow the steps below.

- 1. Apply the desired Upper or Lower Range input.
- 2. Enter the value -987654.0 into the range value being captured.
- 3. If the other range value is to be captured as well, then repeat steps 1 and 2 for that value.

### **TFZ Configuration**

This section explains configurable parameters within the TFZ's Transducer and AI Function Blocks. Block parameters are used to configure how the TFZ operates on the Foundation fieldbus (FF) network.

### **Transducer Block Configuration**

Note:

Before making changes to block parameter settings, you must set the block's mode to Out Of Service (OOS). It may be returned to the previous mode once your changes have been made.

#### **Changing Sensor Configuration**

The following outlines the steps required to change TFZ sensor configurations.

- 1. Change Transducer Block MODE\_BLK. TARGET to OOS.
- 2. Change SENSOR\_TYPE to the desired value.
- 3. Change SENSOR\_CONNECTIONS to the desired parameter.

4. Change Transducer Block MODE\_BLK. TARGET back to OOS.

Keep in mind that when XD\_SCALE engineering units are selected, the unit associated to the PRIMA-RY\_VALUE\_RANGE parameter also changes to this setting. Aside from changing SENSOR\_TYPE, this is the only way to change the engineering units in the sensor Transducer Block's PRIMARY\_VALUE\_RANGE parameter.

#### **Conversion Rules for Temperature Units**

The table below lists the allowed types of sensors. These are derived from the FF-131 Standard Table Specification.

#### **Dependencies and Relationships**

SENSOR\_TYPE affects the following parameters:

PRIMARY\_VALUE\_RANGE SENSOR\_RANGE CAL\_POINT\_HI CAL\_POINT\_LO CAL\_MIN\_SPAN CAL\_UNIT SENSOR\_CONNECTION BROKE\_WIRE\_DETEC-TION

| Value | Sensor Type Description             |  |  |  |
|-------|-------------------------------------|--|--|--|
| 103   | Millivolts (same as 40030)          |  |  |  |
| 104   | Ohm (same as 40040)                 |  |  |  |
| 128   | PT100_A_385(IEC 751)                |  |  |  |
| 129   | PT100_A_392(JIS 1604)               |  |  |  |
| 130   | PT200_A_385(IEC751)                 |  |  |  |
| 131   | PT500_A_385(IEC751)                 |  |  |  |
| 132   | NI120, Edison #7                    |  |  |  |
| 133   | CU10, Edison #15                    |  |  |  |
| 134   | T/C Type B (IEC 584-1 and NIST 175) |  |  |  |
| 135   | T/C Type C (NIST 175)               |  |  |  |
| 136   | T/C Type E (IEC 584-1 and NIST 175) |  |  |  |
| 137   | T/C Type J (IEC 584-1 and NIST 175) |  |  |  |
| 138   | T/C Type K (IEC 584-1 and NIST 175) |  |  |  |
| 139   | T/C Type N (IEC 584-1 and NIST 175) |  |  |  |
| 140   | T/C Type R (IEC 584-1 and NIST 175) |  |  |  |
| 141   | T/C Type S (IEC 584-1 and NIST 175) |  |  |  |
| 142   | T/C Type T (IEC 584-1 and NIST 175) |  |  |  |
| 148   | PT1000_A_385(IEC 751)               |  |  |  |

#### Table 18. Sensor Types

Continued on next page

#### Table 18. Continued

| Manufacturer Specific Sensor Types |                             |  |  |
|------------------------------------|-----------------------------|--|--|
| Value                              | Sensor Type Description     |  |  |
| 40030                              | Millivolts 0-1000mV range   |  |  |
| 40031                              | Millivolts 0-500mV range    |  |  |
| 40032                              | Millivolts 0-250mV range    |  |  |
| 40033                              | Millivolts 0-125mV range    |  |  |
| 40034                              | Millivolts 0-62.5mV range   |  |  |
| 40035                              | Millivolts 0-31.25mV range  |  |  |
| 40040                              | Ohms 0-4000 ohms range      |  |  |
| 40041                              | Ohms 0-2000 ohms range      |  |  |
| 40042                              | Ohms 0-1000 ohms range      |  |  |
| 40043                              | Ohms 0-500 ohms range       |  |  |
| 40044                              | Ohms 0-250 ohms range       |  |  |
| 40045                              | Ohms 0-125 ohms range       |  |  |
| 40050                              | Potentiometer 4000 ohm      |  |  |
| 40051                              | Potentiometer 2000 ohm      |  |  |
| 40052                              | Potentiometer 1000 ohm      |  |  |
| 40053                              | Potentiometer 500 ohm       |  |  |
| 40054                              | Potentiometer 250 ohm       |  |  |
| 40055                              | Potentiometer 125 ohm       |  |  |
| 40060                              | Volt                        |  |  |
| 40070                              | Milliampere                 |  |  |
| 65520                              | PT300_A_385 (IEC 751)       |  |  |
| 65521                              | PT400_A_385 (IEC 751)       |  |  |
| 65522                              | PT200_A_392 (MIL-T-24388)   |  |  |
| 65523                              | PT400_A_392 (MIL-T-24388)   |  |  |
| 65524                              | PT500_A_392 (MIL-T-24388)   |  |  |
| 65525                              | PT1000_A_392 (MIL-T-24388)  |  |  |
| 65526                              | PT100_A_3916 (JIS C1604-81) |  |  |

#### Trimming

Trimming adjusts the measurement accuracy of the TFZ by matching the reading of its actual input to either a calibrated source or the device to which it is connected.

You may trim any point between 0% and 100% along the sensor range. Note that 1 Point trimming applies an offset to the sensor reading, while 2 Point trimming applies both an offset and a gain.

Trimming of the primary variable is facilitated with the use of a number of field calibration (trimming) block parameters. Some are derived from the FF902 Transducer Block common structure while the remainder support PV trim capablitlies provided by Moore Industries' devices.

Trim URP (TB.CAL\_POINT\_HI), Trim LRP (CAL\_ POINT\_LO), Trim min span (CAL\_MIN\_SPAN) and Trim units (CAL\_UNIT) are derived from FF902, and define the field calibration (trimming) configuration. In addition, Trim mode (CAL\_MODE) defines how the trim points are used. Trim URV (CAL\_VALUE\_HI) and Trim LRV (CAL\_VALUE\_LO) hold the trim values for the trim points.

To trim your device, follow the steps below.

- 1. Using the FF Configuration Tool, set the Transducer Block mode to OOS.
- 2. In the CAL\_MODE parameter, choose whether to use 1 or 2 point trimming or to disable the feature. If you choose to disable trimming, skip to Step 9.
- 3. Apply your low input at the CAL\_POINT\_LO parameter.
- Write the CAL\_POINT\_LO value into the CAL\_VALUE\_LO parameter. This will initiate trimming at the low point. If you are using 1 point trimming, skip to Step 9.
- 5. Wait until CAL\_VALUE\_LO changes and settles to reflect the untrimmed input value.
- 6. Apply your upper input at the CAL\_POINT\_HI parameter.

- 7. Write the CAL\_POINT\_HI value into the CAL\_VALUE\_HI parameter. This will initiate trimming at the upper point.
- 8. Wait until CAL\_VALUE\_HI changes and settles to reflect the untrimmed input value.
- 9. Using the FF Configuration Tool, change the Tranducer Block mode to Auto.

#### **Custom Curve**

The Custom Curve feature allows you to set up your own custom curve table. This allows you to tell the transmitter what it should output when it receives a certain input.

Custom curve linearization of the primary variable is made possible by loading a table of up to 128 points into non-volatile storage by using the TAB parameters.

Linearization is accomplished by locating the pair of X-values between which the unlinearized PV resides. Linearization is then performed in order to map the unlinearized PV from the range between the X-values pair onto the range between the corresponding Y-values pair. The algorithm for linearization is the same as is shown in the *Trimming* section, with the trim points being substituted by the table's X-values, and the trim values being substituted by the table's Y-values.

If the unlinearized PV is outside of the table range, then the linear fit mapping is done using the nearest two points' X and Y values. Since two points are always required to do a linear fit, the smallest allowed table consists of two points. Therefore, the default table is a two point table containing the points (0,0) and (100,100).

In linearization tables, successive X-values must all consistently increase in value. There are no restrictions on the relationship between successive Y-values.

A new custom curve is loaded in the following manner:

1. Set the Transducer Block mode to OOS.

- Set OpCode (TAB\_OP\_CODE) to Start New Table. Table status (TAB\_STATUS) will state Loading New Table. Table Size (TAB\_ACTUAL\_ NUMBER) will become zero to indicate that the new table is empty.
- Load the first X-value into Table X-value (TAB\_X\_VALUE), then the corresponding Y-value into Table Y-value (TAB\_Y\_VALUE). Upon loading the Y-value, TAB\_ACTUAL\_ NUMBER will be incremented. If it exceeds the maximum table size of 128 points, then subsequent loads of X-value or Y-value will return an *Exceeds Parameter Limits* error. Perform this step until all table points have been loaded.
- 4. Set TAB\_OP\_CODE to End New Table.
- 5. If the new table is valid, then TAB\_STATUS will state *Table is Valid*, and will be ready for use. Go to Step 7.
- 6. If the new table is invalid, then TAB\_STATUS will indicate an error status. At this point, there are three options.

*Option 1:* If another attempt is to be made to load the new table, then go to Step 2.

*Option 2:* If TAB\_OP\_CODE is set to *Ready*, then the current table will be retested for validity. If it is valid, then *Table is Valid* will be indicated, however the previous table will still be in use. Go to Step 7 to use the new table, Step 8 if you choose not to load a new custom curve or return to Step 2 to load a new table.

*Option 3:* If TAB\_OP\_CODE is set to *Reset Table*, then the current table will be reset to the default table. This guarantees a valid table, even if it will only produce a linear output. However, this does ensure that custom linearization is in a known state. You can go to Step 8 if you choose not to load a new custom curve or return to Step 2 to load a new table.

7. Change LIN\_TYPE from *Linear to Input* to *Other* in order to enable custom linearization.

8. Set the Transducer Block MODE\_BLK.TARGET parameter back to AUTO in order to enable usage of the linearized PV by Analog Input block.

You may read table points of a valid table by loading the point index into TAB\_ENTRY, then reading back the TAB\_X\_VALUE and TAB\_Y\_VALUE.

.3.3

#### **Analog Input Block Configuration**

The following section provides information regarding configurable parameters in the AI Block. A minimum of four parameters must be configured in order to obtain a viable value from the AI Block.

#### Note:

Before making changes to block parameter settings, you must set the block's mode to Out Of Service (OOS). It may be returned to the previous mode once your changes have been made.

#### Configuring a Reading as a Process Temperature Display

To configure a reading as a process temperature display, follow the steps below.

- 1. Change the AI Block's MODE\_BLK.TARGET parameter to OOS.
- 2. Change CHANNEL to Process Value.
- 3. Change L\_TYPE to Direct.
- 4. Change XD\_SCALE UNITS\_INDEX to be displayed in the desired unit.
- 5. Change OUT\_SCALE UNITS\_INDEX to be displayed in the desired unit.
- Change the OUT\_SCALE's 0 and 100 scale to reflect the same values as those of the XD\_ SCALE.
- 7. Return the AI Block's MODE\_BLK.TARGET parameter back to AUTO mode.
- 8. Configure the schedule of the Block.
- 9. Download the Schedule into the Link Master.

#### Configuring a Reading as a Body Temperature Display

To configure a reading as a body temperature display, follow the steps below.

- 1. Change the AI Block's MODE\_BLK.TARGET parameter to OOS.
- 2. Change CHANNEL to Sensor Body Temperature.
- 3. Change L\_TYPE to Direct.
- 4. Change XD\_Scale UNITS\_INDEX to be displayed in the desired unit.
- 5. Change OUT\_SCALE UNITS\_INDEX to be displayed in the desired unit.
- Change OUT\_SCALE's 0 and 100 scale to reflect the same values as those of the XD\_ SCALE.
- 7. Return the AI Block's MODE\_BLK.TARGET parameter back to AUTO mode.
- 8. Configure the Schedule of the Block.
- 9. Download the Schedule into the Link Master

### Linking on the FOUNDATION Fieldbus Network

In order for a TFZ to broadcast process variable data on the FF network, it must be properly linked with another FF device. Of the three blocks in the TFZ, it is only the AIFB that can be usefully connected in this fashion, typically to an AOFB, or PID. However, it cannot be connected to another AIFB, as that can only receive an input from a Transducer Block.

Use a Configurator to link the TFZ's AIFB with another device's receiving block, and then download the network configuration. It will then become possible to monitor the AIFB mode. The AIFB must remain Out of Service unless there is a healthy link with another FF network device.

If a healthy FF network link has been established and the AIFB remains OOS, then the issue is being caused by the TFZ. Possibilities may include a problem with the Tranducer or AI Block configurations or the Resource Block being in OOS mode.

#### Bench Check

To achieve a basic internal configuration that allows the AIFB to be placed in either Manual or Automatic modes, proceed with the bench check instructions below.

- 1. Place the Resource Block mode to AUTO.
- 2. Set the Transducer Block target mode to OOS.
- 3. Change the Sensor Type to PT100 A 385 (IEC 751).
- 4. Connect a 4-wire, 100 ohm sensor to the TFZ. This should result in an approximate reading of zero appearing in the Transducer Block Primary Value, Value, with the Status and substatus reading Bad, OutOfService, NotLimited.
- 5. Place the Transducer Block's target mode to AUTO, and observe the Primary Value Status change to Good\_NonCascade, NonSpecific, NotLimited.
- 6. Place the AIFB target mode to OOS. This prepares the device for the configuration change shown below.
- Change the AIFB.XD\_SCALE Units Index to °C, the AIFB.OUT\_SCALE to the same as AIFB. XD\_SCALE, and AIFB.L\_TYPE to Direct. Also, change AIFB.CHANNEL to Process Value.
- 8. In the AIFB Diagnostics, check that the target mode in the BLOCK\_ERR parameter is OOS.
- 9. Change the AIFB target mode to AUTO. The BLOCK\_ERR value will change to 0x0000.
- 10. Note that the AIFB.OUT Value will now reflect the TB.Primary Value, of approximately zero.
- 11. Change the RB.LCD precision to 3 digits, and RB.LCD selector to OUT (AIFB1). This will normally result in the near zero value being shown to a resolution sufficient enough to view the least significant digit changing approximately every second on the TFZ's display.
- 12. Next, change the AIFB target mode to OOS. The display will stop updating until the AIFB is placed back into AUTO mode. This demonstrates how the AIFB.OUT value is updated on the FF network.

35

### Installation

Installation consists of physically mounting the device within your existing FOUNDATION Fieldbus system and completing the electrical connections. For intrinsically-safe installation, refer to the *Intrinsically-Safe Applications* section of this manual

#### Mounting the TFZ

The TFZ HP (hockey-puck housing) can be mounted with rails, flanges or in one of our larger housings, such as a BH, D-BOX or SB.

### Making the Electrical Connections

In FOUNDATION fieldbus systems, the Host does not provide power to the connected devices. Refer to Figure 4 for a generic diagram describing installation of the TFZ into your system. For detailed information, please refer to your FOUNDATION fieldbus power supply's documentation. For intrinsically-safe installation, refer to the *Installation in Hazardous Locations* section of this manual.

#### Recommended Ground Wiring Practices

Moore Industries recommends the following ground wiring practices:

• Any Moore Industries product in a metal case or housing should be grounded.

• The protective earth conductor must be connected to a system safety earth ground before making any other connections.

• All input signals to, and output signals from, Moore Industries' products should be wired using a shielded, twisted pair technique. Shields are to be connected to an earth or safety ground at the unit itself.

• The maximum length of unshielded input and output signal wiring should be 2 inches.

### **CE Conformity**

Installation of any Moore Industries' products that carry the CE marking **must** adhere to the guidelines in the *Recommended Ground Wiring Practices* section in order to meet the EN 61326 requirements set forth in the applicable EMC directive.

### Operation

Once configured, installed, and supplied with the correct power, the TFZ Programmable FOUNDATION Fieldbus Temperature Transmitter begins to operate immediately. Depending upon environmental conditions, it can be expected to operate unattended for extended periods of time.

#### Maintenance

Moore Industries suggests a quick check for terminal tightness and general unit condition every 6-8 months. Always adhere to any site requirements for programmed maintenance.

### **Customer Support**

If service assistance is ever required for a device in your application, refer to the back cover of this manual for the telephone numbers to Moore Industries' customer service department.

If possible, make a note of the model number of the unit before calling. For fastest assistance, have the following information available: serial number, the job number and purchase order number under which it was shipped.

# Installation in Hazardous Locations

This section contains important information regarding installation of the TFZ in Hazardous Area Locations .

The diagram on the following page must be used for units that are to operate in areas requiring intrinsicallysafe instrumentation.

Refer to the *Special Conditions* outlined below before proceeding with installation.

#### **Special Conditions of Use**

The following instructions must be adhered to when the TFZ is used in hazardous locations and potentially explosive atmospheres.

## I. Intrinsically Safe (Ex ia) Applications (Zones 0 and 1)

1. The TFZ Temperature Transmitter shall be installed in an enclosure which maintains an ingress protection rating of IP20.

2. For Zone 0 installations, the final enclosure shall not contain more than 10% in total of aluminum, magnesium, titanium and zirconium, or 7.5% in total of magnesium, titanium and zirconium.

3. For Zone 1 installations, the final enclosure shall not contain 7.5% in total of magnesium.

4. Using the box provided on the name plate, the user shall permanently mark the protection type chosen for the specific installation. Once the type of protection has been marked, it shall not be changed.

5. The COM port shall not be used in the hazardous area.

#### II. Type N (Ex n) Applications (Zone 2)

1. If installed as Category 3 equipment, the Model TFZ Temperature Transmitter shall be installed in an enclosure which maintains an ingress protection of IP54 and meets the enclosure requirements of EN60079-0 and EN60079-15.

2. The Model TFZ Temperature Transmitter shall contain external transient protection to prevent the supply voltage from exceeding 46.2V including tolerance.

3. Using the box provided on the name plate, the user shall permanently mark the protection type chosen for the specific installation. Once the type of protection has been marked, it shall not be changed.

4. The COM port shall not be used in the hazardous area.

### Safety Concerns

For your safety, read the following information carefully before proceeding with installation.

WARNING: EXPLOSION HAZARD – FOR DIVISION 2 HAZARDOUS LOCATIONS. DO NOT DISCONNECT EQUIPMENT WHEN A FLAMMABLE ATMOSPHERE IS PRESENT.

WARNING: SUBSTITUTION OF COMPONENTS IS NOT ALLOWED AS IT MAY IMPAIR THE INTRINSIC SAFETY (ZONES 0 & 1, DIVISION 1) OF THE UNIT AND/OR THE NON-INCENDIVE/ TYPE N (DIVISION 2, ZONE 2) CIRCUIT. DO NOT OPEN THE UNIT WHEN EITHER ENERGIZED OR WHEN AN EXPLOSIVE GAS/DUST ATMOSPHERE IS PRESENT. DISCONNECT POWER BEFORE SERVICING. READ AND UNDERSTAND THE MANUFACTURER'S INSTALLATION AND OPERATING PROCEDURES, AND ADHERE TO ALL APPLICABLE ELECTRICAL CODES, SAFETY INSTRUCTIONS AND REGULATIONS.

AVERTISSEMENT – RISQUE D'EXPLOSION. NE PAS DEBRANCHER TANT QUE LE CIRCUIT EST SOUS TENSION, A MOINS QU'IL NE S' AGISSE D'UN EMPLACEMENT NON DANGEREUX. Refer to the Safety Concerns section on the previous page before continuing with installation.





| BO NOT SCALE DRAWING         CATEOR         Control         Dometry in the register of the r |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| connected to the bus cable has to be passive, meaning that the apparatus is not allowed to provide energy to the system, except to a leakage current of 50 µA for each connected device. Separately-powered equipment needs a galvanic isolation to insure that the Intrinsically Safe Fieldbus circuit remains passive.<br>The cable used to interconnect the devices needs to comply with the following parameters:<br>1. Loop Resistance R' = 15 - 150 Ω/km<br>3. Capacitance per unit length C' = 80 - 200 nF/km<br>1. Loop Resistance Per unit length C' = 80 - 200 nF/km<br>3. Capacitance per unit length C' = 80 - 200 nF/km<br>1. Loop Resistance R' = 15 - 150 Ω/km<br>3. Capacitance per unit length C' = 80 - 200 nF/km<br>1. Loop Resistance R' = 15 - 150 Ω/km<br>3. Capacitance per unit length C' = 80 - 200 nF/km<br>3. Capacitance per unit length C' = 80 - 200 nF/km<br>1. Loop Resistance R' = 15 - 150 Ω/km<br>3. Capacitance per unit length C' = 80 - 200 nF/km<br>1. Loop Resistance R' = 15 - 150 Ω/km<br>3. Capacitance Per unit length C' = 80 - 200 nF/km<br>1. Loop Resistance R' = 15 - 150 Ω/km<br>3. Capacitance Per unit length C' = 80 - 200 nF/km<br>1. Loop Resistance R' = 15 - 150 Ω/km<br>3. C' = C' Line/Line + C' Line/Screen (if the Screen is connected to one line)<br>5. C' = C' Line/Line + C' Line/Screen (if the Screen is connected to one line)<br>5. C' = C' Line/Line + C' Line/Screen (if the Screen is connected to one line)<br>7. Length of Trunk Cable = 1 km<br>7. Length of Trunk Cable = 1 km<br>1. Longth of Trunk Cable = 1 km<br>1. Ength of Splice = 1 meter (maximum)<br>1. Longth of trunk Cable = 1 km<br>1. Longth of trunk Cable = 1 km<br>1. Longth of Trunk Cable = 1 km<br>1. Longth of Splice = 1 meter (maximum)<br>1. Longth of Splice = 1 meter (maximum)<br>1. Longth of trunk Cable = 1 km<br>1. Longth of trunk Cable = 0 - 100 Ω<br>2. C = C - 2.2 µF<br>1. Installation Notes for FISCO & Entity Concepts.<br>1. Installation Notes for FISCO & Entity Concepts.                           |
| a) No revisions can be made to this certified drawing prior to notifying FM Approvals (the certifying agency).<br>b) Associated apparatus manufacturer's installation guidelines must be followed when installing and commissioning this equipment (TFZ & TPZ).<br>c) The FISCO Associated Apparatus must be Agency-Approved (FM, CSA, UL, ATEX, ANZEX, etc).<br>d) Control equipment connected to FISCO barrier must not use or generate more than 250 Vmms or Vdc.<br>e) Resistance between FISCO Intrinsically Safe Ground and Earth Ground must be less than 1.0 Ω.<br>f) Installation should be in accordance with ANSI/ISA-RP12.06.01 "Installation of Intrinsically Safe Systems for Hazardous 'Classified' Locations'' and the<br>National Electric Code (ANSI/NFPA 70), and/or applicable CEC and IEC regualtions and requirements for installing and commissioning such devices.<br>g) The FISCO Concept allows interconnection of Fieldbus Intrinsically Safe apparatus with FISCO associated apparatus when the following is true:<br>(Vmax or Ui) ≥ (Voc, Vt or Uo) (Imax or Ii) ≥ (Isc, It or Io) (Pmax or Pi) ≥ (Po)<br>Installation Notes for Non-Incendive & Type N Concepts:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| For Non-Incendive (Class I, Division 2, Groups A, B, C & D), and for Class II/III, Divisions 1 & 2, Group E, F & G, and for Type N hazardous applications,<br>install per the NEC/CEC/IEC using threaded metal conduit. Intrinsic Safety barrier is not required. The maximum supply voltage is 32Vdc. A dust-tight seal<br>must be used at the conduit entry when the device is used in Class II & III locations.<br><u>WARNING:</u> Explosion Hazard Do not disconnect equipment unless power has been switched off or the area is known to be Non-Hazardous. Substitution<br>of components is not allowed as it may affect the circuit design integrity and possibly impair suitability for hazardous locations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### **RETURN PROCEDURES**

#### To return equipment to Moore Industries for repair, follow these four steps:

1. Call Moore Industries and request a Returned Material Authorization (RMA) number.

#### Warranty Repair -

If you are unsure if your unit is still under warranty, we can use the unit's serial number to verify the warranty status for you over the phone. Be sure to include the RMA number on all documentation.

#### Non-Warranty Repair -

If your unit is out of warranty, be prepared to give us a Purchase Order number when you call. In most cases, we will be able to quote you the repair costs at that time. The repair price you are quoted will be a "Not To Exceed" price, which means that the actual repair costs may be less than the quote. Be sure to include the RMA number on all documentation.

- 2. Provide us with the following documentation:
  - A note listing the symptoms that indicate the unit needs repair
  - b) Complete shipping information for return of the equipment after repair
  - c) The name and phone number of the person to contact if questions arise at the factory
- 3. Use sufficient packing material and carefully pack the equipment in a sturdy shipping container.
- Ship the equipment to the Moore Industries location nearest you. 4.

The returned equipment will be inspected and tested at the factory. A Moore Industries representative will contact the person designated on your documentation if more information is needed. The repaired equipment, or its replacement, will be returned to you in accordance with the shipping instructions furnished in your documentation.

#### WARRANTY DISCLAIMER

THE COMPANY MAKES NO EXPRESS, IMPLIED OR STATUTORY WAR-BANTIES (INCLUDING ANY WARBANTY OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE) WITH RESPECT TO ANY GOODS OR SERVICES SOLD BY THE COMPANY. THE COMPANY DIS-CLAIMS ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR TRADE USAGE, AND ANY BUYER OF GOODS OR SERVICES FROM THE COMPANY ACKNOWLEDGES THAT THERE ARE NO WARRANTIES IMPLIED BY CUSTOM OR USAGE IN THE TRADE OF THE BUYER AND OF THE COMPANY, AND THAT ANY PRIOR DEALINGS OF THE BUYER WITH THE COMPANY DO NOT IMPLY THAT THE COMPANY WARRANTS THE GOODS OR SERVICES IN ANY WAY.

ANY BUYER OF GOODS OR SERVICES FROM THE COMPANY AGREES WITH THE COMPANY THAT THE SOLE AND EXCLUSIVE REM-EDIES FOR BREACH OF ANY WARRANTY CONCERNING THE GOODS OR SERVICES SHALL BE FOR THE COMPANY, AT ITS OPTION, TO REPAIR OR REPLACE THE GOODS OR SERVICES OR REFUND THE PURCHASE PRICE. THE COMPANY SHALL IN NO EVENT BE LIABLE FOR ANY CON-SEQUENTIAL OR INCIDENTAL DAMAGES EVEN IF THE COMPANY FAILS IN ANY ATTEMPT TO REMEDY DEFECTS IN THE GOODS OR SERVICES BUT IN SUCH CASE THE BUYER SHALL BE ENTITLED TO NO MORE THAN A REFUND OF ALL MONIES PAID TO THE COMPANY BY THE BUYER FOR PURCHASE OF THE GOODS OR SERVICES

ANY CAUSE OF ACTION FOR BREACH OF ANY WARBANTY BY THE COMPANY SHALL BE BARRED UNLESS THE COMPANY RE-CEIVES FROM THE BUYER A WRITTEN NOTICE OF THE ALLEGED DEFECT OR BREACH WITHIN TEN DAYS FROM THE EARLIEST DATE ON WHICH THE BUYER COULD REASONABLY HAVE DISCOVERED THE ALLEGED DEFECT OR BREACH, AND NO ACTION FOR THE BREACH OF ANY WARRANTY SHALL BE COMMENCED BY THE BUYER ANY LATER THAN TWELVE MONTHS FROM THE FABLIEST DATE ON WHICH THE BUYER COULD REASONABLY HAVE DISCOV-ERED THE ALLEGED DEFECT OR BREACH.

#### **RETURN POLICY**

For a period of thirty-six (36) months from the date of shipment, and under normal conditions of use and service, Moore Industries ("The Company") will at its option replace, repair or refund the purchase price for any of its manufactured products found, upon return to the Company (transportation charges prepaid and otherwise in accordance with the return procedures established by The Company), to be defective in material or workmanship. This policy extends to the original Buyer only and not to Buyer's customers or the users of Buyer's products, unless Buyer is an engineering contractor in which case the policy shall extend to Buyer's immediate customer only. This policy shall not apply if the product has been subject to alteration, misuse, accident, neglect or improper application, installation, or operation THE COMPANY SHALL IN NO EVENT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.



WOFLOWIDE + www.milnet.com United States + into Cmilinat.com Tel (616) 394-7111 • FAX. (816) 351-2916 Australia • sales 6 moore ind.com.au Tel (C2) 8535 720C + 54X. (02) 8525-7295

Belgium • irac-8 mooreing.be Tot C3/445.10 16 . TAX Cala40 17.97 The Netterlands + sales & modered in Tet (C)244-517971 + 44. (2)544-516620

China • sales @mooreind.sh.cn Tel: 85-21-52491450 + FAX: 56-21-62890625 United Kinodom • sales 6 meetend.com Tel: 01293 E14486 + 54X 01292 536852